Thermodynamic matchers: strengthening the significance of RNA folding energies.
نویسندگان
چکیده
Thermodynamic RNA secondary structure prediction is an important recipe for the latest generation of functional non-coding RNA finding tools. However, the predicted energy is not strong enough by itself to distinguish a single functional non-coding RNA from other RNA. Here, we analyze how well an RNA molecule folds into a particular structural class with a restricted folding algorithm called Thermodynamic Matcher (TDM). We compare this energy value to that of randomized sequences. We construct and apply TDMs for the non-coding RNA families RNA I and hammerhead ribozyme type III and our results show that using TDMs rather than universal minimum free energy folding allows for highly significant predictions.
منابع مشابه
Thermodynamic matchers for the construction of the cuckoo RNA family
RNA family models describe classes of functionally related, non-coding RNAs based on sequence and structure conservation. The most important method for modeling RNA families is the use of covariance models, which are stochastic models that serve in the discovery of yet unknown, homologous RNAs. However, the performance of covariance models in finding remote homologs is poor for RNA families wit...
متن کاملRNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction
Thermodynamic folding algorithms and structure probing experiments are commonly used to determine the secondary structure of RNAs. Here we propose a formal framework to reconcile information from both prediction algorithms and probing experiments. The thermodynamic energy parameters are adjusted using 'pseudo-energies' to minimize the discrepancy between prediction and experiment. Our framework...
متن کاملRelation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملCharacterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry
A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop-receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH(‡)) and Eyring transi...
متن کاملUnifying evolutionary and thermodynamic information for RNA folding of multiple alignments
Computational methods for determining the secondary structure of RNA sequences from given alignments are currently either based on thermodynamic folding, compensatory base pair substitutions or both. However, there is currently no approach that combines both sources of information in a single optimization problem. Here, we present a model that formally integrates both the energy-based and evolu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational systems bioinformatics. Computational Systems Bioinformatics Conference
دوره شماره
صفحات -
تاریخ انتشار 2006